A critical role for Al in regulating the corrosion resistance of nanocrystalline Mo(Si1−xAlx)2 films

Document Type

Journal Article


Royal Society of Chemistry


Faculty of Computing, Health and Science


School of Engineering




This article was originally published as: Xu, J., Lai, D., Xie, Z. , Munro, P., & Jiang, Z. (2012). A critical role for Al in regulating the corrosion resistance of nanocrystalline Mo(Si1−xAlx)2 films. Journal of Materials Chemistry, 22(6), 2596-2606. Original article available here


Novel nanocrystalline Mo(Si 1-xAl x) 2 films, with differing Al contents were synthesized by double cathode glow discharge. The films exhibited a compact columnar microstructure having a pronounced (111) preferred orientation. The corrosion behaviour of these films were characterized by using various electrochemical techniques including open circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in 3.5 wt% NaCl solution. The corrosion resistance of the films increased with increasing Al content in the as-synthesized films. The composition and chemical state of the passive layers formed on the films were investigated by X-ray photoelectron spectroscopy (XPS). It was demonstrated that the passive layer formed on the binary MoSi 2 film was highly enriched in SiO 2 with minor amounts of MoO 4 2-, MoO 2 and SiO x. With the increase of Al content in the films, Al 2O 3 was generated and incorporated into the passive layers, enhancing the corrosion resistance of the films by inhibiting the dissolution of Mo. Built upon the experimental results, the first-principles density-functional theory was applied to calculate the inter-atomic bonding strength in Mo(Si 1-xAl x) 2 and elucidate the role of Al in controlling the corrosion resistance of the films. The new findings lay a solid basis for the development and application of MoSi 2 based corrosion-resistant films.



This document is currently not available here.