Date of Award

2005

Document Type

Thesis

Publisher

Edith Cowan University

Degree Name

Bachelor of Science Honours

School

School of Computer and Information Science

Faculty

Faculty of Computing, Health and Science

First Supervisor

Dr Alfred Tan

Second Supervisor

Dr Douglas Chai

Abstract

2D-barcodes were designed to carry significantly more data than its 1D counterpart. These codes are often used in industrial information tagging applications where high data capacity, mobility, and data robustness are required. Wireless mobile devices such as camera phones and Portable Digital Assistants (PDAs) have evolved from just a mobile voice communication device to what is now a mobile multimedia computing platform. Recent integration of these two mobile technologies has sparked some interesting applications where 2D-barcodes work as visual tags and/or information source and camera phones performs image processing tasks on the device itself. One of such applications is hyperlink establishment. The 2D symbol captured by a camera phone is decoded by the software installed in the phone. Then the web site indicated by the data encoded in a symbol is automatically accessed and shown in the display of the camera phone. Nonetheless, this new mobile applications area is still at its infancy. Each proposed mobile 2D-barcode application has its own choice of code, but no standard exists nor is there any study done on what are the criteria for setting a standard 2D-barcode for mobile phones. This study intends to address this void. The first phase of the study is qualitative examination. In order to select a best standard 2D-barcode, firstly, features desirable for a standard 2D-barcode that is optimized for the mobile phone platform are identified. The second step is to establish the criteria based on the features identified. These features are based on the operating limitations and attributes of camera phones in general use today. All published and accessible 2D-barcodes are thoroughly examined in terms of criteria set for the selection of a best 2D-barcode for camera phone applications. In the second phase, the 2D-barcodes that have higher potential to be chosen as a standard code are experimentally examined against the three criteria: light condition, distance, whether or not a 2D-barcode supports VGA resolution. Each sample 2D-barcode is captured by a camera phone with VGA resolution and the outcome is tested using an image analysis tool written in the scientific language called MATLAB. The outcome of this study is the selection of the most suitable 2D-barcode for applications where mobile devices such as camera phones are utilized.

Share

 
COinS