Date of Award


Degree Type


Degree Name

Bachelor of Engineering Honours


Faculty of Science, Technology and Engineering

First Advisor

Dr Tadeusz Wysocki


This thesis presents an original work in the area of designing and implementing a simulation testbed for modelling a high speed spread spectrum Asynchronous Transfer Mode (ATM) Local Area Network (LAN). The spread spectrum technique used in this LAN model is Direct Sequence Code Division Multiple Access (DS-CDMA). The simulation model includes at least a physical layer of such a LAN, embedded into the COSSAP1 simulation environment, and has been fully tested. All the newly developed building blocks are comprised of standard blocks from the COSSAP libraries or compatible user-built primitive blocks (only where it is absolutely necessary), and are flexible enough to allow the modification of simulation or model parameters; such as the number of signal channels, modulation method used, different spreading code sequences and so on. All these changes can be made with minimal effort. Another significant contribution made in this thesis is the extended research into evaluating the Bit Error Rate (BER) performance of different spread spectrum COMA coding schemes for an indoor microwave A1M LAN [8]. Different spread spectrum CDMA coding schemes are compared for their transmission error rate in Additive White Gaussian Noise (AWGN) channel with varying transmitted signal power and at different channel Signal to Noise Ratio (SNR) levels. Since a wireless microwave channel is very prone to transmission errors, a major contribution of the simulation testbed developed in this thesis is its use in the finding of an optimal physical layer transmission scheme with the best Bit Error Rate (BER) performance in an indoor environment.