Date of Award


Degree Type


Degree Name

Bachelor of Engineering Honours


Faculty of Communication, Health and Science

First Advisor

Abdesselam Bouzerdoum

Second Advisor

Dr Hon Cheung


This thesis discusses a highly effective still image compression algorithm – The Embedded Zerotree Wavelets coding technique, as it is called. This technique is simple but achieves a remarkable result. The image is wavelet-transformed, symbolically coded and successive quantised, therefore the compression and transmission/storage saving can be achieved by utilising the structure of zerotree. The algorithm was first proposed by Jerome M. Shapiro in 1993, however to minimise the memory usage and speeding up the EZW processor, a Depth First Search method is used to transverse across the image rather than Breadth First Search method as initially discussed in Shapiro's paper (Shapiro, 1993). The project's primary objective is to simulate the EZW algorithm from a basic building block of 8 by 8 matrix to a well-known reference image such Lenna of 256 by 256 matrix. Hence the algorithm performance can be measured, for instance its peak signal to noise ratio can be calculated. The software environment used for the simulation is a Very-High Speed Integrated Circuits - Hardware Description Language such Peak VHDL, PC based version. This will lead to the second phase of the project. The secondary objective is to test the algorithm at a hardware level, such FPGA for a rapid prototype implementation only if the project time permits.