Date of Award

2011

Document Type

Thesis

Publisher

Edith Cowan University

Degree Name

Bachelor of Science (Biological Science) Honours

School

School of Natural Science

Faculty

Faculty of Computing, Health and Science

First Supervisor

Dr Robert Davis

Abstract

Species occurring in fragmented urban habitats often exhibit low genetic diversity which can be attributed to restricted gene flow and elevated levels of inbreeding. This can have serious implications for the survival of species especially when faced with additional pressures caused by urbanisation. The population genetic structure of the generalist skink Ctenotus fallens was examined within and among three urban vegetation remnants in the Perth metropolitan area in Western Australia, using both microsatellite and AFLP markers. Historic genetic connectivity between the populations of each remnant was shown as well as weak patterns of genetic differentiation which appeared to suggest isolation by distance. The results presented two possible scenarios; that genetic connectivity is maintained between populations via dispersal between remnants through the urban matrix or, that the urban matrix is a barrier to gene flow for C. fallens and contemporary levels of gene flow cannot be detected due to large, randomly mating populations persisting within the remnants which may be acting as a buffer for any genetic change associated with isolation.

Share

 
COinS