Publication Date

2020

Document Type

Dataset

Publisher

Dryad

School or Research Centre

Centre for Ecosystem Management

Funders

Hermon Slade Foundation, Award: HSF08-6

Australian Research Council, Award: DP0557022

Description

Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.

DOI

10.5061/dryad.08kprr50t

Language

eng

File Format(s)

.csv and R files

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Public Domain Dedication 1.0 License.

Included in

Biology Commons

Share

 
COinS