ZnHCF@PB nanoparticles with reduced bandgap as a promising photocatalyst for the degradation of conventional and emerging water contaminants
Document Type
Journal Article
Publication Title
Journal of Colloid and Interface Science
Volume
631
Issue
Pt B
First Page
258
Last Page
268
PubMed ID
36403381
Publisher
Elsevier
School
School of Engineering
RAS ID
56587
Funders
Australian Research Council Discovery Project
Grant Number
ARC Numbers : DP200103332, DP200103315
Grant Link
http://purl.org/au-research/grants/arc/DP200103332 http://purl.org/au-research/grants/arc/DP200103315
Abstract
The photocatalytic degradation of conventional and emerging pollutants (i.e., methyl, ethyl, and butyl parabens) was investigated under light irradiation with 315 - 1050 nm wavelength using core-shell zinc doped hexacyanoferrate@Prussian blue nanoparticles. Different synthesis parameters including precursors loading, drying temperature and different metal ions precursors were studied. The ten different composite systems obtained, were investigated for the photodegradation of methylene blue in deionized water. The optimal performance photocatalyst (20 mg/L) photodegrade 94 % of 10 ppm methylene blue within 24 min. The optimized sample was further used for the photodegradation of methylene blue in municipal wastewater matrix; it completely degraded the methylene blue after 51 min. Finally, the developed nanoparticles were investigated for the photodegradation of parabens. The chemical oxygen demand showed 30 % of parabens was degraded in the municipal wastewater matrix. The results of this research show that ZnHCF@PB nanoparticles could be used for the effective photocatalytic remediation of conventional and emerging pollutants, i.e., parabens. STATEMENT OF ENVIRONMENTAL IMPLICATION: Through this study, it is anticipated that ZnO-derived ZnHCF@PB NPs can achieve a bandgap of 1.11 eV, which is much lower than that of ZnO NPs (3.15 eV). Interestingly, ZnHCF@PB NPs were efficiently used for the degradation of conventional (i.e., dyes) and emerging contaminants (i.e., parabens) in deionized water and municipal wastewater matrices to mimic industrial wastewater.
DOI
10.1016/j.jcis.2022.11.031
Access Rights
subscription content
Comments
Fatima, H., Azhar, M. R., Cao, C., & Shao, Z. (2023). ZnHCF@ PB nanoparticles with reduced bandgap as a promising photocatalyst for the degradation of conventional and emerging water contaminants. Journal of Colloid and Interface Science, 631, 258-268. https://doi.org/10.1016/j.jcis.2022.11.031