The double-edged effect of single atom metals on photocatalysis

Document Type

Journal Article

Publication Title

Chemical Engineering Journal

Volume

453

Publisher

Elsevier

School

School of Science

RAS ID

56563

Funders

National Science and Technology Major Project National Science Foundation of Jiangsu Province, China Australian Research Council

Grant Number

ARC Number : DP190103548

Grant Link

http://purl.org/au-research/grants/arc/DP190103548

Comments

Liu, X., He, F., Lu, Y., Wang, S., Zhao, C., Wang, S., . . . Wang, S. (2023). The double-edged effect of single atom metals on photocatalysis. Chemical Engineering Journal, 453(2), article 139833. https://doi.org/10.1016/j.cej.2022.139833

Abstract

Single atom catalysts (SACs) are suggested to be ideal materials for catalysis and will exhibit the highest performance at the maximum single atom loading. However, their influences on the intrinsic structure and properties of a photocatalytic substrate should not be neglected. Herein, we proposed a facile and green approach for large scale synthesis of Ni-SA/g-C3N4 catalysts with various contents of Ni-N4 coordination. Experimental investigations and quantum chemical calculations disclosed that the Ni-N4 and g-C3N4 host are two active sites for photocatalysis and play different roles in photocatalysis. The promoting and suppressing effects of Ni-N4 coordination on g-C3N4 matrix at Ni-N4 adjacency are also revealed. Maximum efficiency in photocatalytic water splitting and contaminant oxidation processes can only be realized at an optimized SA loading by the balance of the two effects. Extra loading of SA will make adjacent carbon nitride matrix lose semiconducting properties for generating hot carriers toward photocatalysis. This work reveals the intrinsic correlation between SAC structure and photocatalysis, shedding light on the fundamental understandings of structure-catalysis correlation and providing new insight into SACs.

DOI

10.1016/j.cej.2022.139833

Access Rights

subscription content

Share

 
COinS