Document Type

Journal Article

Publication Title

Fuel

Volume

346

Publisher

Elsevier

School

School of Engineering

RAS ID

60166

Funders

Edith Cowan University

King Abdullah University for Science and Technology (KAUST)

Comments

Alanazi, A., Abid, H. R., Usman, M., Ali, M., Keshavarz, A., Vahrenkamp, V., ... & Hoteit, H. (2023). Hydrogen, carbon dioxide, and methane adsorption potential on Jordanian organic-rich source rocks: Implications for underground H2 storage and retrieval. Fuel, 346, Article 128362. https://doi.org/10.1016/j.fuel.2023.128362

Abstract

Hydrogen (H2) storage in geological formations offers a potential large-scale solution suitable for an industrial-scale hydrogen economy. However, the presence of organic residuals can significantly influence the H2 storage efficiency, as well as cushion gas performance, such as CO2 and CH4, injected to maintain healthy reservoir pressure. Thus, the H2 storage efficiency and cushion gas selectivity were thoroughly investigated in this work based on H2, CO2, and CH4 adsorption measurements using, for the first time, actual organic-rich carbonate-rich Jordanian source rock samples (TOC = 13 % to 18 %), measured at 60 °C temperature and a wide range of pressure (0.1 – 10.0 MPa). Initially, the samples were characterized using various analytical methods. Results demonstrated that H2 adsorption capacities reached up to 0.47 mol/kg at 9.0 MPa. The measured adsorption of CO2 was four times higher than H2. An increase in TOC significantly decreased H2 adsorption compared to CO2 and CH4. Additionally, CO2 demonstrated preferential behavior as a cushion gas compared to CH4, attributed mainly to the calcite content and presence of carboxyl and sulfonyl groups. This study provides fundamental data for understanding H2 potential storage issues in an organic-rich rock formation and thus aids in the industrial implementation of an H2 supply chain.

DOI

10.1016/j.fuel.2023.128362

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS