Document Type

Journal Article

Publication Title

Chemical Engineering Journal

Volume

467

Publisher

Elsevier

School

School of Engineering

RAS ID

60135

Comments

Ghasemi, S., Yan, B., Zargar, M., Ling, N. N., Fridjonsson, E. O., & Johns, M. L. (2023). Impact of microplastics on organic fouling of hollow fiber membranes. Chemical Engineering Journal, 467, article 143320. https://doi.org/10.1016/j.cej.2023.143320

Abstract

Given the potential hazards of microplastics (MPs), it is desirable to efficiently remove them during wastewater treatment processes. To this end, ultrafiltration (UF) membranes can significantly increase the removal of MPs, however the fouling of such membrane modules can also be impacted by the presence of MPs. Magnetic Resonance Imaging (MRI) was used here to non-invasively quantify the effect of polyethylene (PE) MPs accumulation in a 3D UF hollow fiber (HF) membrane module containing 400 fibers, via direct non-invasive velocity imaging of the flow distribution between individual fibers during module operation. The co-effect of MPs and alginate (a common organic model foulant mimicking extracellular polymeric substances (EPS)) on fouling of the HF module was then explored. Flow was initially equally distributed with fouling causing flow in particular fibers to be significantly reduced. Fouling with MPs resulted in minimal flow distribution disruption and was easily remediated hydraulically, in contrast alginate fouling required chemical cleaning in order to fully restore homogeneous flow distribution between the fibers. The presence of both MPs and alginate resulted in a more heterogeneous disruption of the fibre flow distribution due to fouling and resulted in much more effective hydraulic cleaning of the module.

DOI

10.1016/j.cej.2023.143320

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

 
COinS