Document Type
Journal Article
Publication Title
Microorganisms
Volume
11
Issue
5
Publisher
MDPI
School
School of Science
RAS ID
60248
Funders
Australian Research Council / Parker CRC for Integrated Hydrometallurgy Solutions (established and supported under the Australian Government’s Cooperative Research Centres Program) / Institute for Geoscience Research through TIGeR Small Grants
Grant Number
ARC Number : DP200103243
Grant Link
http://purl.org/au-research/grants/arc/DP200103243
Abstract
The adsorption behaviour of micro-organisms during the initial attachment stage of biofilm formation affects subsequent stages. The available area for attachment and the chemophysical properties of a surface affect microbial attachment performance. This study focused on the initial attachment behaviour of Klebsiella aerogenes on monazite by measuring the ratio of planktonic against sessile subpopulations (P:S ratio), and the potential role of extracellular DNA (eDNA). eDNA production, effects of physicochemical properties of the surface, particle size, total available area for attachment, and the initial inoculation size on the attachment behaviour were tested. K. aerogenes attached to monazite immediately after exposure to the ore; however, the P:S ratio significantly (p = 0.05) changed in response to the particle size, available area, and inoculation size. Attachment occurred preferentially on larger-sized (~50 µm) particles, and either decreasing the inoculation size or increasing the available area further promoted attachment. Nevertheless, a portion of the inoculated cells always remained in a planktonic state. K. aerogenes produced lower eDNA in response to the changed surface chemical properties when monazite was replaced by xenotime. Using pure eDNA to cover the monazite surface significantly (p ≤ 0.05) hindered bacterial attachment due to the repulsive interaction between the eDNA layer and bacteria.
DOI
10.3390/microorganisms11051331
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Van Alin, A., Corbett, M. K., Fathollahzadeh, H., Tjiam, M. C., Putnis, A., Eksteen, J., ... & Watkin, E. (2023). Klebsiella aerogenes adhesion behaviour during biofilm formation on monazite. Microorganisms, 11(5), 1331. https://doi.org/10.3390/microorganisms11051331