Document Type

Journal Article

Publication Title

Information (Switzerland)

Volume

14

Issue

5

Publisher

MDPI

School

School of Engineering

RAS ID

60157

Funders

University of Kufa

Comments

Rabee, F., & Hussain, Z. M. (2023). Oriented crossover in genetic algorithms for computer networks optimization. Information, 14(5), 276. https://doi.org/10.3390/info14050276

Abstract

Optimization using genetic algorithms (GA) is a well-known strategy in several scientific disciplines. The crossover is an essential operator of the genetic algorithm. It has been an active area of research to develop sustainable forms for this operand. In this work, a new crossover operand is proposed. This operand depends on giving an elicited description for the chromosome with a new structure for alleles of the parents. It is suggested that each allele has two attitudes, one attitude differs contrastingly with the other, and both of them complement the allele. Thus, in case where one attitude is good, the other should be bad. This is suitable for many systems which contain admired parameters and unadmired parameters. The proposed crossover would improve the desired attitudes and dampen the undesired attitudes. The proposed crossover can be achieved in two stages: The first stage is a mating method for both attitudes in one parent to improving one attitude at the expense of the other. The second stage comes after the first improvement stage for mating between different parents. Hence, two concurrent steps for improvement would be applied. Simulation experiments for the system show improvement in the fitness function. The proposed crossover could be helpful in different fields, especially to optimize routing algorithms and network protocols, an application that has been tested as a case study in this work.

DOI

10.3390/info14050276

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS