Document Type
Journal Article
Publication Title
Molecules
Volume
27
Issue
4
Publisher
MDPI
School
School of Engineering
RAS ID
52310
Abstract
The presence of heavy metals in water bodies is linked to the increasing number of industries and populations. This has serious consequences for the quality of human health and the environment. In accordance with this issue, water and wastewater treatment technologies including ion exchange, chemical extraction, and hydrolysis should be conducted as a first water purification stage. However, the sequestration of these toxic substances tends to be expensive, especially for large scale treatment methods that require tedious control and have limited efficiency. Therefore, adsorption methods using adsorbents derived from biomass represent a promising alternative due to their great efficiency and abundance. Algal and seaweed biomass has appeared as a sustainable solution for environmentally friendly adsorbent production. This review further discusses recent developments in the use of algal and seaweed biomass as potential sorbent for heavy metal bioremediation. In addition, relevant aspects like metal toxicity, adsorption mechanism, and parameters affecting the completion of adsorption process are also highlighted. Overall, the critical conclusion drawn is that algae and seaweed biomass can be used to sustainably eliminate heavy metals from wastewater.
DOI
10.3390/molecules27041275
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Znad, H., Awual, M., & Martini, S. (2022). The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules, 27(4), 1275. https://doi.org/10.3390/molecules27041275