Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities
Document Type
Journal Article
Publication Title
Advanced Materials
Publisher
Wiley
School
School of Engineering
RAS ID
61889
Funders
National Natural Science Foundation of China / Natural Science Foundation of Jiangsu Province / Jiangsu Provincial Key Research and Development Program / Start-up Research Fund of Southeast University / Fundamental Research Funds for the Central Universities / Guangdong Basic and Applied Basic Research Foundation / Science, Technology, and Innovation Commission of Shenzhen Municipality
Abstract
Platinum-based electrocatalysts possess high water electrolysis activity and are essential components for hydrogen evolution reaction (HER). A major challenge, however, is how to break the cost-efficiency trade-off. Here, a novel defect engineering strategy is presented to construct a nanoporous (FeCoNiB0.75)97Pt3 (atomic %) high-entropy metallic glass (HEMG) with a nanocrystalline surface structure that contains large amounts of lattice distortion and stacking faults to achieve excellent electrocatalytic performance using only 3 at% of Pt. The defect-rich HEMG achieves ultralow overpotentials at ampere-level current density of 1000 mA cm−2 for HER (104 mV) and oxygen evolution reaction (301 mV) under alkaline conditions, while retains a long-term durability exceeding 200 h at 100 mA cm−2. Moreover, it only requires 81 and 122 mV to drive the current densities of 1000 and 100 mA cm−2 for HER under acidic and neutral conditions, respectively. Modelling results reveal that lattice distortion and stacking fault defects help to optimize atomic configuration and modulate electronic interaction, while the surface nanoporous architecture provides abundant active sites, thus synergistically contributing to the reduced energy barrier for water electrolysis. This defect engineering approach combined with a HEMG design strategy is expected to be widely applicable for development of high-performance alloy catalysts. © 2023 Wiley-VCH GmbH.
DOI
10.1002/adma.202303439
Access Rights
subscription content
Comments
Zhang, X., Yang, Y., Liu, Y., Jia, Z., Wang, Q., Sun, L., . . . Shen, B. (2023). Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Advanced Materials, 35(38), article 2303439. https://doi.org/10.1002/adma.202303439