The nature of active sites for plasmon-mediated photothermal catalysis and heat-coupled photocatalysis in dry reforming of methane
Document Type
Journal Article
Publication Title
Energy & Environmental Materials
Publisher
Wiley
School
School of Engineering
RAS ID
56571
Funders
ECU Vice-Chancellor's Professorial Research Fellowship / National Natural Science Foundation of China / Australian Research Council
Grant Number
ARC Numbers : DP170104264, DP190103548, LE120100026
Grant Link
http://purl.org/au-research/grants/arc/DP170104264 http://purl.org/au-research/grants/arc/DP190103548
Abstract
Solar energy-induced catalysis has been attracting intensive interests and its quantum efficiencies in plasmon-mediated photothermal catalysis (P-photothermal catalysis) and external heat-coupled photocatalysis (E-photothermal catalysis) are ultimately determined by the catalyst structure for photo-induced energetic hot carriers. Herein, different catalysts of supported (TiO2-P25 and Al2O3) platinum quantum dots are employed in photo, thermal, and photothermal catalytic dry reforming of methane. Integrated experimental and computational results unveil different active sites (hot zones) on the two catalysts for photo, thermal, and photothermal catalysis. The hot zones of P-photothermal catalysis are identified to be the metal–support interface on Pt/P25 and the Pt surface on Pt/Al2O3, respectively. However, a change of the active site to the Pt surface on Pt/P25 is for the first time observed in E-photothermal catalysis (external heating temperature of 700 °C). The hot zones contribute to the significant enhancements in photothermal catalytic reactivity against thermocatalysis. This study helps to understand the reaction mechanism of photothermal catalysis to exploit efficient catalysts for solar energy utilization and fossil fuels upgrading. © 2022 Zhengzhou University.
DOI
10.1002/eem2.12416
Access Rights
free_to_read
Comments
Zhang, J., Wang, L., Zhao, X., Shi, L., Chen, H., Zhang, S., . . . Sun, H. (2023). The nature of active sites for plasmon-mediated photothermal catalysis and heat-coupled photocatalysis in dry reforming of methane. Energy & Environmental Materials, 6(5), article e12416. https://doi.org/10.1002/eem2.12416