Adaptive feature fusion for time series classification
Document Type
Journal Article
Publication Title
Knowledge-Based Systems
Volume
243
Publisher
Elsevier
School
School of Engineering
RAS ID
44311
Funders
National Natural Science Foundation of China (61806013, 61876010, 61906005, 62166002), General project of Science and Technology Plan of Beijing Municipal Education Commission (KM202110005028), Project of Interdisciplinary Research Institute of Beijing University of Technology (2021020101), International Research Cooperation Seed Fund of Beijing University of Technology (2021A01).
Abstract
Time series classification is one of the most critical and challenging problems in data mining, which exists widely in various fields and has essential research significance. However, to improve the accuracy of time series classification is still a challenging task. In this paper, we propose an Adaptive Feature Fusion Network (AFFNet) to enhance the accuracy of time series classification. The network can adaptively fuse multi-scale temporal features and distance features of time series for classification. Specifically, the main work of this paper includes three aspects: firstly, we propose a multi-scale dynamic convolutional network to extract multi-scale temporal features of time series. Thus, it retains the high efficiency of dynamic convolution and can extract multi-scale data features. Secondly, we present a distance prototype network to extract the distance features of time series. This network obtains the distance features by calculating the distance between the prototype and embedding. Finally, we construct an adaptive feature fusion module to effectively fuse multi-scale temporal and distance features, solving the problem that two features with different semantics cannot be effectively fused. Experimental results on a large number of UCR datasets indicate that our AFFNet achieves higher accuracies than state-of-the-art models on most datasets, as well as on the WISDM, HAR and Opportunity datasets, demonstrating its effectiveness.
DOI
10.1016/j.knosys.2022.108459
Access Rights
subscription content
Comments
Wang, T., Liu, Z., Zhang, T., Hussain, S. F., Waqas, M., & Li, Y. (2022). Adaptive feature fusion for time series classification. Knowledge-Based Systems, 243, 108459. https://doi.org/10.1016/j.knosys.2022.108459