Experimental and numerical investigation on the dynamic damage behavior of gas-bearing coal

Document Type

Journal Article

Publication Title

Geomechanics and Geophysics for Geo-Energy and Geo-Resources

Volume

8

Issue

2

Publisher

Springer

School

School of Engineering

RAS ID

51994

Funders

National Natural Science Foundation of China (Grant No. 51804287).

Comments

Wang, C., Xu, X., Zhang, Y., Arif, M., Wang, Q., & Iglauer, S. (2022). Experimental and numerical investigation on the dynamic damage behavior of gas-bearing coal. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(2), 1-17. https://doi.org/10.1007/s40948-022-00357-7

Abstract

The study of the dynamic mechanical properties of gas-bearing coal and its mechanical feedback is of great importance for coal mining operations. Herein, we investigate the influence of methane pressure on the mechanical and dynamic failure properties of gas-bearing coal. Dynamic impact experiments were performed and analyzed numerically with a modified Holmquist–Johnson–Cook (HJC) model. In addition, the dynamic failure behavior and deformation mode of gas-bearing coal samples are examined in detail. The experimental and simulation results showed that (1) higher methane pressure at the same impact velocity led to a greater fractal dimension factor of crushed coal; (2) methane gas can weaken the elastic modulus, mechanical strength, and strain rate of coal and influence its dynamic damage characteristics; (3) under the same methane pressure, a higher impact velocity results in drastically more severe damage in gas-bearing coal, and a transition from tension–compression failure to compression stress dominated failure was observed with the increasing impact velocity; and (4) higher methane pressures resulted in more significant damage. A method for determining the HJC parameters of gas-bearing coal is presented, and mechanical alterations in coal triggered by interactions with methane are simulated. This research provides an improved understanding of complex and catastrophic underground dynamic disasters. Article Highlights: Mechanical testing and quantitative evaluation of dynamic responses of gas-bearing coal.Influence analysis on the dynamic response of coal exposure to methane pressure and loading speed. A computational model was developed to simulate the mechanical alterations and damage behavior of coal triggered by methane presence.

DOI

10.1007/s40948-022-00357-7

Access Rights

subscription content

Share

 
COinS