Document Type

Journal Article

Publication Title

Human-Centric Intelligent Systems

Publisher

Springer

School

School of Science

RAS ID

70381

Comments

Hossain, M. S., Armstrong, L. J., Cook, D. M., & Zaenker, P. (2024). Application of histopathology image analysis using deep learning networks. Human-Centric Intelligent Systems, 4(3), 417-436. https://doi.org/10.1007/s44230-024-00077-z

Abstract

As the rise in cancer cases, there is an increasing demand to develop accurate and rapid diagnostic tools for early intervention. Pathologists are looking to augment manual analysis with computer-based evaluation to develop more efficient cancer diagnostics reports. The processing of these reports from manual evaluation is time-consuming, where the pathologists focus on accurately segmenting individual cancer cells, a vital step in analysis. This paper describes the design and validation of an application which has been developed based on deep learning networks. The application includes a workflow of image pre-processing followed by synthetic image generation, which is crucial due to the lack of training data in pathology settings. The next steps are the segmentation of nuclei regions and overlapping nuclei splitting. An improved approach has been considered based on a cycle-consistent GAN network for synthetic image generation. The synthetic images were utilized in a modified U-net network. Accurately outlining the individual nucleus border assisted an automated system that split the nuclei cluster into the individual nucleus. The SSIM and PSNR values of synthetic images corresponding to original were 0.204 and 10.610. The DSC value of the network trained by the synthetic data was 0.984 which was higher than the network trained by original images (0.805). The developed application provided better individual nuclei segmentation performance, where the average accuracy of different group images was 0.97. This higher accuracy suggests the benefit of using synthetic images in a situation to avoid the scarcity of labeled histopathology images in deep networks.

DOI

10.1007/s44230-024-00077-z

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Diagnosis Commons

Share

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.