Author Identifier

Myles Calder Murphy: https://orcid.org/0000-0001-6068-1096

Document Type

Journal Article

Publication Title

BMJ Open Sport and Exercise Medicine

Volume

10

Issue

4

Publisher

BMJ Publishing Group

School

Nutrition and Health Innovation Research Institute / School of Medical and Health Sciences

RAS ID

77094

Funders

Orthopaedic Research Foundation of Western Australia / Western Australian Department of Health Innovation (G1006605)

Comments

Murphy, M. C., Sylvester, C., Whife, C., D’Alessandro, P., Rio, E. K., & Vallence, A. M. (2024). Anodal transcranial direct current stimulation (tDCS) modulates quadriceps motor cortex inhibition and facilitation during rehabilitation following anterior cruciate ligament (ACL) reconstruction: A triple-blind, randomised controlled proof of concept trial. BMJ Open Sport & Exercise Medicine, 10(4). https://doi.org/10.1136/bmjsem-2024-002080

Abstract

Objectives Following anterior cruciate ligament reconstruction (ACLR), maladaptive changes occur in the motor cortex representation of the quadriceps, evidenced by increases in intracortical inhibition and facilitation. The primary objective of this proof-of-concept study was to determine if anodal transcranial direct current stimulation (tDCS) can alter quadriceps intracortical inhibition and facilitation in an early-ACLR population after 6 weeks of application during exercise. Methods We performed a randomised, triple-blind controlled trial for proof of concept comparing anodal-tDCS to sham-tDCS following ACLR. Anodal-tDCS or sham-tDCS was delivered to the primary motor cortex for 20 min, three times per week, for 6 weeks from week 2 post ACLR. Transcranial magnetic stimulation quantified quadriceps short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and short-interval intracortical facilitation (SICF). Significance at p<0.05. Results Participants were randomised to anodal (n=11) or sham (n=10) tDCS. Participants were predominantly male (n=13) and had a mean (SD) age of 24.4 (4.7) years. For SICI, there was a group-by-time effect for anodal-tDCS (β=0.519, 95% CI 0.057 to 0.981, p=0.028) and an effect for time (β=-1.421, 95% CI -1.919 to -0.923, p<0.001). For LICI, there was no group-by-time (β=-0.217, 95% CI -0.916 to 0.482, p=0.543) or time effect (β=0.039, 95% CI -0.815 to -0.893, p=0.928). For SICF, there was a group-by-time effect for anodal-tDCS (β=-0.764, 95%CI -1.407 to -0.120, p=0.020) but not time (β=0.504, 95% CI -0.627 to 1.635, p=0.383). Conclusion This study provided proof of the efficacy of anodal-tDCS post ACLR in reducing maladaptive quadriceps inhibition and facilitation. We demonstrated anodal-tDCS improved facilitation and inhibition post ACLR, which are drivers of arthrogenic muscle inhibition.

DOI

10.1136/bmjsem-2024-002080

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

 
COinS