Document Type

Journal Article

Publication Title

Marine Environmental Research

Volume

176

PubMed ID

35358909

Publisher

Elsevier

School

School of Science / Centre for Marine Ecosystems Research

Funders

Swedish International Development Cooperation Agency (Sida) through the Bilateral Marine Science Program between Sweden and Tanzania and The Swedish Research Council (Vetenskapsrådet) (project grant number: DNR 2019-04038) Bolin Centre for Climate Research, Edith Cowan University School of Science Collaborative Research Grant Scheme 2018 Australian Research Council LIEF Project (LE170100219).

Grant Number

LE170100219

Grant Link

http://purl.org/au-research/grants/arc/LE170100219

Comments

Dahl, M., Ismail, R., Braun, S., Masqué, P., Lavery, P. S., Gullström, M., ... & Björk, M. (2022). Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments. Marine Environmental Research, 176, 105608. https://doi.org/10.1016/j.marenvres.2022.105608

Abstract

Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22–25 g m−2 yr−1) since the 1940s, while during the last two decades (∼1998 until 2018) they exhibited 24–30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid–1990s. In contrast, the decrease in the δ13C signatures of sedimentary Corg in the Mbweni meadow since the early 2010s was likely linked to increased Corg run-off of mangrove/terrestrial material following mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks.

DOI

10.1016/j.marenvres.2022.105608

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS