High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode
Abstract
Lithium-ion capacitors (LICs) are emerging as progressive energy storage systems with high energy density, high power output, and a long cycle life span. The key to constructing LICs with high performances is alleviating the dynamics mismatch between the faradic anode and capacitor-type cathode. Herein, nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers (NAC-L-Co3O4 NFs) were prepared by electrospinning strategy, where the amorphous carbon can mitigation the volume variation of Co3O4 during the lithiation/delithiation process, while the hierarchically porous structure provides effective channels and exposes more active sites for fast electron transfer and Li+ storage. The delicate structure endows NAC-L-Co3O4 NFs with remarkable rate capacity and robust cycling durability. Furthermore, nitrogen-doped carbon polyhedron (NPCP) is prepared for the cathode, displaying superior rate performances and cycling stability. As a result, by assembling the NAC-L-Co3O4//NPCP LICs, a high energy density of 296 Wh kg−1 and a high output of 11750 W kg−1 is delivered. Additionally, the LIC devices display excellent cycle lifespan (80% capacity retention after 10000 cycles at 1 A g−1).
RAS ID
52038
Document Type
Journal Article
Date of Publication
10-15-2022
Volume
918
Funding Information
National Natural Science Foundation of China (No. 2213000238) YanKuang Group Co., Ltd. Technology Project (YKKJ2019AJ08JG-R63) Taishan Scholar Project (No. ts201712020)
School
School of Engineering
Copyright
subscription content
Publisher
Elsevier
Comments
Li, S., Zhang, J., Chao, H., Tan, X., Wu, X., He, S., ... & Wu, M. (2022). High Energy Density Lithium-Ion Capacitor Enabled by Nitrogen-doped Amorphous Carbon Linked Hierarchically Porous Co3O4 Nanofibers Anode and Porous Carbon Polyhedron Cathode. Journal of Alloys and Compounds, 918, 165726. https://doi.org/10.1016/j.jallcom.2022.165726