Abstract

Shot peening (SP) was employed to modify the surface microstructure and mechanical properties of (TiB+TiC)/Ti-6Al-4V titanium matrix composite (TMC). And the microstructure evolution and mechanical properties were characterized and analyzed in detail. Transmission electron microscopy (TEM) results illustrated that the surface nanograins were introduced by the effect of SP and the hindering of reinforcements to the matrix deformation. The nanograins were formed near the reinforcement/matrix interface because the matrix was squeezed by both the shots and the reinforcements. Moreover, with increasing the volume fraction of reinforcements, the smaller nanograins were introduced near the interfaces due to the severe deformation between the matrix and reinforcements, which were caused by the decrease in average distance between two reinforcements. Under the same intensity of SP, the deformation of TiC was more severe than that of TiB, and more dislocations were introduced around TiC. The results were influenced by both the different shapes and distribution of reinforcements, and the impact direction of shots. After SP, the compressive residual stress (CRS) and the hardness in the peened surface layer were improved, which was due to the surface deformation, nanograins and high dislocation density in the nanocrystal layer.

RAS ID

35670

Document Type

Journal Article

Date of Publication

2021

Volume

206

Funding Information

Funding information : https://doi.org/10.1016/j.matdes.2021.109760

School

School of Engineering

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publisher

Elsevier

Comments

Wen, Y., Wu, Y., Hua, L., Xie, L., Wang, L., Zhang, L. C., & Lu, W. (2021). Effects of shot peening on microstructure evolution and mechanical properties of surface nanocrystal layer on titanium matrix composite. Materials & Design, 206, article 109760. https://doi.org/10.1016/j.matdes.2021.109760

Included in

Engineering Commons

Share

 
COinS
 

Link to publisher version (DOI)

10.1016/j.matdes.2021.109760