Modeling biohydrogen production using different data driven approaches
Abstract
Three modeling techniques namely multilayer perceptron artificial neural network (MLPANN), microbial kinetic with Levenberg-Marquardt algorithm (MKLMA) developed from microbial growth, and the response surface methodology (RSM) were used to investigate the biohydrogen (BioH2) process. The MLPANN and MKLMA were used to model the kinetics of major metabolites during the dark fermentation (DF). The MLPANN and RSM were deployed to model the electron-equivalent balance (EEB) from the cumulative data (after 24 h fermentation) during the DF. With the additional experimental results of kinetic data (20 × 10) and cumulative data (18 × 9), the uncertainties of different models were compared. A new effective strategy for modeling the complex BioH2 process during the DF is proposed: MLPANN and MKLMA are used for the investigation of kinetics of the major metabolites from the limited numbers of experimental data set, and the MLPANN and RSM are used for statistical analysis of the investigated operational parameters upon the major metabolites through EEB perspective. The proposed strategy is a useful and practical paradigm in modeling and optimizing the BioH2 production during the dark fermentation.
RAS ID
39590
Document Type
Journal Article
Date of Publication
2021
Volume
46
Issue
58
Funding Information
Provincial Key Laboratory Programme Ningbo Commonweal fund University of Nottingham UNNC FoSE New Researchers Grant Qianjiang Talent Scheme National Key R&D Program of China
School
School of Engineering
Copyright
subscription content
Publisher
Elsevier
Comments
Wang, Y., Tang, M., Ling, J., Wang, Y., Liu, Y., Jin, H., . . . Sun, Y. (2021). Modeling biohydrogen production using different data driven approaches. International Journal of Hydrogen Energy, 46(58), 29822-29833. https://doi.org/10.1016/j.ijhydene.2021.06.122