Authors
Utpal Bose, Edith Cowan UniversityFollow
Angéla Juhász, Edith Cowan UniversityFollow
Ronald Yu
Mahya Bahmani, Edith Cowan UniversityFollow
Keren Byrne
Malcolm Blundell
James A. Broadbent
Crispin A. Howitt
Michelle L. Colgrave, Edith Cowan UniversityFollow
Document Type
Journal Article
Publication Title
Frontiers in Plant Science
Volume
12
Publisher
Frontiers Media S. A.
School
School of Science
RAS ID
39704
Funders
CSIRO Australian Government Research Training Program Scholarship
Abstract
Lysine is the most limiting essential amino acid in cereals, and efforts have been made over the decades to improve the nutritional quality of these grains by limiting storage protein accumulation and increasing lysine content, while maintaining desired agronomic traits. The single lys3 mutation in barley has been shown to significantly increase lysine content but also reduces grain size. Herein, the regulatory effect of the lys3 mutation that controls storage protein accumulation as well as a plethora of critically important processes in cereal seeds was investigated in double mutant barley lines. This was enabled through the generation of three hordein double-mutants by inter-crossing three single hordein mutants, that had all been backcrossed three times to the malting barley cultivar Sloop. Proteome abundance measurements were integrated with their phenotype measurements; proteins were mapped to chromosomal locations and to their corresponding functional classes. These models enabled the prediction of previously unknown points of crosstalk that connect the impact of lys3 mutations to other signalling pathways. In combination, these results provide an improved understanding of how the mutation at the lys3 locus remodels cellular functions and impact phenotype that can be used in selective breeding to generate favourable agronomic traits.
DOI
10.3389/fpls.2021.718504
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Bose, U., Juhász, A., Yu, R., Bahmani, M., Byrne, K., Blundell, M., . . . Colgrave, M. L. (2021). Proteome and nutritional shifts observed in hordein double-mutant barley lines. Frontiers in Plant Science, 12, article 718504. https://doi.org/10.3389/fpls.2021.718504