Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults
Document Type
Journal Article
Publication Title
GeroScience
Volume
43
Issue
6
First Page
2719
Last Page
2735
Publisher
Springer
School
School of Medical and Health Sciences
RAS ID
40496
Abstract
Age-related deterioration within both motoneuron and monoaminergic systems should theoretically reduce neuromodulation by weakening motoneuronal persistent inward current (PIC) amplitude. However, this assumption remains untested. Surface electromyographic signals were collected using two 32-channel electrode matrices placed on soleus and tibialis anterior of 25 older adults (70 ± 4 years) and 17 young adults (29 ± 5 years) to investigate motor unit discharge behaviors. Participants performed triangular-shaped plantar and dorsiflexion contractions to 20% of maximum torque at a rise-decline rate of 2%/s of each participant’s maximal torque. Pairwise and composite paired-motor unit analyses were adopted to calculate delta frequency (ΔF), which has been used to differentiate between the effects of synaptic excitation and intrinsic motoneuronal properties and is assumed to be proportional to PIC amplitude. Soleus and tibialis anterior motor units in older adults had lower ΔFs calculated with either the pairwise [-0.99 and -1.46 pps; -35.4 and -33.5%, respectively] or composite (-1.18 and -2.28 pps; -32.1 and -45.2%, respectively) methods. Their motor units also had lower peak discharge rates (-2.14 and -2.03 pps; -19.7 and -13.9%, respectively) and recruitment thresholds (-1.50 and -2.06% of maximum, respectively) than young adults. These results demonstrate reduced intrinsic motoneuron excitability during low-force contractions in older adults, likely mediated by decreases in the amplitude of persistent inward currents. Our findings might be explained by deterioration in the motoneuron or monoaminergic systems and could contribute to the decline in motor function during aging; these assumptions should be explicitly tested in future investigations.
DOI
10.1007/s11357-021-00478-z
Access Rights
free_to_read
Comments
Orssatto, L. B. R., Borg, D. N., Blazevich, A. J., Sakugawa, R. L., Shield, A. J., & Trajano, G. S. (2021). Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. GeroScience, 43(6), 2719-2735. https://doi.org/10.1007/s11357-021-00478-z