Authors
Richard K. Le Leu
Jean M. Winter
Claus T. Christophersen, Edith Cowan UniversityFollow
Graeme P. Young
Karen J. Humphreys
Ying Hu
Silvia W. Gratz
Rosalind B. Miller
David L. Topping
Anthony R. Bird
Michael A. Conlon
Document Type
Journal Article
Publisher
Cambridge University Press
Place of Publication
United Kingdom
School
School of Medical and Health Sciences
RAS ID
19746
Abstract
Epidemiological studies have identified increased colorectal cancer (CRC) risk with high red meat (HRM) intakes, whereas dietary fibre intake appears to be protective. In the present study, we examined whether a HRM diet increased rectal O6-methyl-2-deoxyguanosine (O6MeG) adduct levels in healthy human subjects, and whether butyrylated high-amylose maize starch (HAMSB) was protective. A group of twenty-three individuals consumed 300 g/d of cooked red meat without (HRM diet) or with 40 g/d of HAMSB (HRM+HAMSB diet) over 4-week periods separated by a 4-week washout in a randomised cross-over design. Stool and rectal biopsy samples were collected for biochemical, microbial and immunohistochemical analyses at baseline and at the end of each 4-week intervention period. The HRM diet increased rectal O6MeG adducts relative to its baseline by 21 % (P< 0·01), whereas the addition of HAMSB to the HRM diet prevented this increase. Epithelial proliferation increased with both the HRM (P< 0·001) and HRM+HAMSB (P< 0·05) diets when compared with their respective baseline levels, but was lower following the HRM+HAMSB diet compared with the HRM diet (P< 0·05). Relative to its baseline, the HRM+HAMSB diet increased the excretion of SCFA by over 20 % (P< 0·05) and increased the absolute abundances of the Clostridium coccoides group (P< 0·05), the Clostridiumleptum group (P< 0·05), Lactobacillus spp. (P< 0·01), Parabacteroides distasonis (P< 0·001) and Ruminococcus bromii (P< 0·05), but lowered Ruminococcus torques (P< 0·05) and the proportions of Ruminococcus gnavus, Ruminococcus torques and Escherichia coli (P< 0·01). HRM consumption could increase the risk of CRC through increased formation of colorectal epithelial O6MeG adducts. HAMSB consumption prevented red meat-induced adduct formation, which may be associated with increased stool SCFA levels and/or changes in the microbiota composition.
DOI
10.1017/S0007114515001750
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Comments
Leu, R. K., Winter, J. M., Christophersen, C., Young, G. P., Humphreys, K. J., Hu, Y., ... Conlon, M. A. (2015). Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. The British Journal of Nutrition, 114, 220-230. . Available here