Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation
Abstract
Highly porous and monodisperse manganese oxides with different particle sizes were synthesized via a one-pot hydration and annealing process. Their catalytic performances were evaluated by the activation of peroxymonosulfate (PMS) to degrade phenol in aqueous solutions. The effects of sphere size (200-500 nm), calcination temperature (200-1000 °C), catalytic stability (leaching problem and reusability), reaction kinetics, and reaction temperature (25-45 °C) on the degradation efficiencies as well as the degradation mechanism were comprehensively studied. The small sized catalyst displayed the best efficiency in decomposition of phenol, and the annealing treatments would significantly improve the catalytic stability.
Document Type
Journal Article
Location of the Work
United States
School
School of Engineering
RAS ID
22073
Copyright
subscription content
Publisher
American Chemical Society
Comments
Lui, Q., Sun, H., Wang, Y., Tade, M. O., & Wang, S. (2016). Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation. The Journal of Physical Chemistry C, 120(30), 16871-16878. Available here