Deep learning on underwater marine object detection: A survey
Document Type
Conference Proceeding
Publisher
Springer
School
School of Science
RAS ID
26069
Abstract
Deep learning, also known as deep machine learning or deep structured learning based techniques, have recently achieved tremendous success in digital image processing for object detection and classification. As a result, they are rapidly gaining popularity and attention from the computer vision research community. There has been a massive increase in the collection of digital imagery for the monitoring of underwater ecosystems, including seagrass meadows. This growth in image data has driven the need for automatic detection and classification using deep neural network based classifiers. This paper systematically describes the use of deep learning for underwater imagery analysis within the recent past. The analysis approaches are categorized according to the object of detection, and the features and deep learning architectures used are highlighted. It is concluded that there is a great scope for automation in the analysis of digital seabed imagery using deep neural networks, especially for the detection and monitoring of seagrass.
DOI
10.1007/978-3-319-70353-4_13
Access Rights
free_to_read
Comments
Moniruzzaman M., Islam S.M.S., Bennamoun M., Lavery P. (2017) Deep Learning on Underwater Marine Object Detection: A Survey. In: Blanc-Talon J., Penne R., Philips W., Popescu D., Scheunders P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science, vol 10617. Springer, Cham
Available here