Involvement of N-methyl-D-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans
Document Type
Journal Article
Publication Title
Journal of Neurophysiology
Publisher
APS
School
School of Medical and Health Sciences
RAS ID
27929
Abstract
Plasticity can be induced at human corticospinalmotoneuronal synapses by delivery of repeated, paired stimuli to corticospinal axons and motoneurons in a technique called paired corticospinal-motoneuronal stimulation (PCMS). To date, the mechanisms of the induced plasticity are unknown. To determine whether PCMS-induced plasticity is dependent on N-methyl-D-aspartate receptors (NMDARs), the effect of the noncompetitive NMDAR antagonist dextromethorphan on PCMS-induced facilitation was assessed in a 2-day, double-blind, placebo-controlled experiment. PCMS consisted of 100 pairs of stimuli, delivered at an interstimulus interval that produces facilitation at corticospinal-motoneuronal synapses that excite biceps brachii motoneurons. Transcranial magnetic stimulation elicited corticospinal volleys, which were timed to arrive at corticospinal-motoneuronal synapses just before antidromic potentials elicited in motoneurons with electrical brachial plexus stimulation. To measure changes in the corticospinal pathway at a spinal level, biceps responses to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were measured before and for 30 min after PCMS. Individuals who displayed a ≥10% increase in CMEP size after PCMS on screening were eligible to take part in the 2-day experiment. After PCMS, there was a significant difference in CMEP area between placebo and dextromethorphan days (P ~ 0.014). On the placebo day PCMS increased average CMEP areas to 127 = 46% of baseline, whereas on the dextromethorphan day CMEP area was decreased to 86 = 33% of baseline (mean = SD; placebo: n ~ 11, dextromethorphan: n ~ 10). Therefore, dextromethorphan suppressed the facilitation of CMEPs after PCMS. This indicates that plasticity induced at synapses in the human spinal cord by PCMS may be dependent on NMDARs. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation can strengthen the synaptic connections between corticospinal axons and motoneurons at a spinal level in humans. The mechanism of the induced plasticity is unknown. In our 2-day, double-blind, placebo-controlled study we show that the N-methyl-D-aspartate receptor (NMDAR) antagonist dextromethorphan suppressed plasticity induced by paired corticospinal-motoneuronal stimulation, suggesting that an NMDAR-dependent mechanism is involved.
DOI
10.1152/jn.00457.2017
Access Rights
subscription content
Comments
Donges, S. C., D’Amico, J. M., Butler, J. E., & Taylor, J. L. (2018). Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans. Journal of neurophysiology, 119(2), 652-661. Available here