Spontaneous formation of noble- and heavy-metal-free alloyed semiconductor quantum rods for efficient photocatalysis
Authors
Dechao Chen
Huayang Zhang
Yunguo Li
Yingping Pang
Zongyou Yin
Hongqi Sun, Edith Cowan UniversityFollow
Laichang Zhang, Edith Cowan UniversityFollow
Shaobin Wang
Martin R. Saunders
Emily Barker
Guohua Jia
Document Type
Journal Article
Publication Title
Advanced Materials
Publisher
Wiley - V C H Verlag GmbH & Co. KGaA
School
School of Engineering
RAS ID
27647
Abstract
Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSxSe1− x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSxSe1− x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g−1 h−1, but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSxSe1− x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.
DOI
10.1002/adma.201803351
Access Rights
subscription content
Comments
Chen, D., Zhang, H., Li, Y., Pang, Y., Yin, Z., Sun, H., ... & Jia, G. (2018). Spontaneous Formation of Noble‐and Heavy‐Metal‐Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 30(39), 1803351. Available here.