Spontaneous formation of noble- and heavy-metal-free alloyed semiconductor quantum rods for efficient photocatalysis

Document Type

Journal Article


Wiley - V C H Verlag GmbH & Co. KGaA

Place of Publication



School of Engineering


Originally published as: Chen, D., Zhang, H., Li, Y., Pang, Y., Yin, Z., Sun, H., ... & Jia, G. (2018). Spontaneous Formation of Noble‐and Heavy‐Metal‐Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 30(39), 1803351. Original article available here.


Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSxSe1− x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSxSe1− x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g−1 h−1, but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSxSe1− x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.



Access Rights