Document Type

Journal Article

Publication Title

British Journal of Sports Medicine

Medical Subject Headings

Athletic Injuries; Biomedical Research; Humans; Models, Statistical; Physical Conditioning, Human; Research Design; Sports Medicine; Time Factors

ISSN

1473-0480

Volume

53

Issue

1

First Page

61

Last Page

68

PubMed ID

30413422

Publisher

BMJ Publishing Group

School

School of Medical and Health Sciences / Australian Centre for Research into Injury in Sport and its Prevention (ACRISP)

RAS ID

28825

Comments

Nielsen, R. O., Bertelsen, M. L., Ramskov, D., Møller, M., Hulme, A., Theisen, D., ... & Parner, E. T. (2019). Time-to-event analysis for sports injury research part 1: time-varying exposures. British Journal of Sports Medicine, 53(1), 61-68.

Available here.

Abstract

BACKGROUND: ‘How much change in training load is too much before injury is sustained, among different athletes?’ is a key question in sports medicine and sports science. To address this question the investigator/practitioner must analyse exposure variables that change over time, such as change in training load. Very few studies have included time-varying exposures (eg, training load) and time-varying effect-measure modifiers (eg, previous injury, biomechanics, sleep/stress) when studying sports injury aetiology.

AIM: To discuss advanced statistical methods suitable for the complex analysis of time-varying exposures such as changes in training load and injury-related outcomes.

CONTENT: Time-varying exposures and time-varying effect-measure modifiers can be used in time-to-event models to investigate sport injury aetiology. We address four key-questions (i) Does time-to-event modelling allow change in training load to be included as a time-varying exposure for sport injury development? (ii) Why is time-to-event analysis superior to other analytical concepts when analysing training-load related data that changes status over time? (iii) How can researchers include change in training load in a time-to-event analysis? and, (iv) Are researchers able to include other time-varying variables into time-to-event analyses? We emphasise that cleaning datasets, setting up the data, performing analyses with time-varying variables and interpreting the results is time-consuming, and requires dedication. It may need you to ask for assistance from methodological peers as the analytical approaches presented this paper require specialist knowledge and well-honed statistical skills.

CONCLUSION: To increase knowledge about the association between changes in training load and injury, we encourage sports injury researchers to collaborate with statisticians and/or methodological epidemiologists to carefully consider applying time-to-event models to prospective sports injury data. This will ensure appropriate interpretation of time-to-event data.

DOI

10.1136/bjsports-2018-099408

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

 
COinS