A novel behaviour profiling approach to continuous authentication for mobile applications
Document Type
Conference Proceeding
Publisher
SciTePress
School
Security Research Institute
RAS ID
31034
Abstract
The growth in smartphone usage has led to increased user concerns regarding privacy and security. Smartphones contain sensitive information, such as personal data, images, and emails, and can be used to perform various types of activity, such as transferring money via mobile Internet banking, making calls and sending emails. As a consequence, concerns regarding smartphone security have been expressed and there is a need to devise new solutions to enhance the security of mobile applications, especially after initial access to a mobile device. This paper presents a novel behavioural profiling approach to user identity verification as part of mobile application security. A study involving data collected from 76 users over a 1-month period was conducted, generating over 3 million actions based on users’ interactions with their smartphone. The study examines a novel user interaction approach based on supervised machine learning algorithms, thereby enabling a more reliable identity verification method. The experimental results show that users could be distinguished via their behavioural profiling upon each action within the application, with an average equal error rate of 26.98% and the gradient boosting classifier results prove quite compelling. Based on these findings, this approach is able to provide robust, continuous and transparent authentication.
DOI
10.5220/0007313302460251
Access Rights
free_to_read
Comments
Alotaibi, S., Alruban, A., Furnell, S., & Clarke, N. (2019). A novel behaviour profiling approach to continuous authentication for mobile applications. In Proceedings of the 5th International Conference on Information Systems Security and Privacy (pp. 246-251). Prague, Czech Republic: SciTePress. Available here