An experimental study on the durability and strength of SCC incorporating FA, GGBS and MS
Document Type
Journal Article
Publication Title
Proceedings of the Institution of Civil Engineers - Structures and Buildings
Publisher
ICE Publishing
School
School of Engineering
RAS ID
31317
Abstract
Self-compacting concrete (SCC) is an efficient new concrete that is flowable without segregation or bleeding and does not require additional compaction. The strength, workability, durability, carbon dioxide emissions and costs of four different mixes containing fly ash (FA), ground granulated blast-furnace slag (GGBS) and microsilica (MS) were investigated in the study described in this paper. Standard test methods were used to determine the workability, strength and durability of the mixes including resistance to chloride ion penetration, water penetration, water absorption and initial surface absorption. Compressive strength tests were also performed at different times after setting. The test results showed that the mixes containing FA, GGBS and MS presented better durability than normal concrete. Mixes with 10% MS provided good early strength and durability. In addition, the mixes containing FA, GGBS and MS were found to offer a significant reduction in cost but a slight increase in carbon dioxide emissions.
DOI
10.1680/jstbu.17.00129
Access Rights
subscription content
Comments
Deilami, S., Aslani, F., & Elchalakani, M. (2019). An experimental study on the durability and strength of SCC incorporating FA, GGBS and MS. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 172(5), 327–339. Available here