Authors
Bastien Bontemps
Enzo Piponnier
Emeric Chalchat
Anthony J. Blazevich, Edith Cowan UniversityFollow
Valérie Julian
Olivia Bocock
Martine Duclos
Vincent Martin
Sébastien Ratel
Document Type
Journal Article
Publication Title
Frontiers in Physiology
ISSN
1664-042X
Volume
10
First Page
119
Last Page
119
PubMed ID
30828304
Publisher
Frontiers Media S.A.
School
Centre for Exercise and Sports Science Research / School of Medical and Health Sciences
RAS ID
29602
Abstract
The present study compared neuromuscular fatigue profiles between children, untrained adults and adult endurance athletes during repeated maximal muscle contractions. Eighteen prepubertal boys, 19 untrained men and 13 endurance male athletes performed 5-s maximal voluntary isometric knee extensor contractions (MVICs) interspersed with 5-s recovery until MVIC reached 60% of its initial value. Single and doublet magnetic stimulations were delivered to the femoral nerve to quantify the time course of potentiated twitch amplitude (Ttw,pot), high-frequency torque (T100 Hz) and the low-to-high frequency torque ratio (T10 Hz/T100 Hz), i.e., indicators of peripheral fatigue. M-wave-normalized EMG amplitudes (EMG/M) and the maximal voluntary activation level (VA) were calculated to quantify central fatigue. Adults (15.9 ± 3.9 repetitions) performed fewer MVICs than children (40.4 ± 19.7) and endurance athletes (51.7 ± 19.6), however, no difference was observed between children and athletes (P = 0.13). Ttw,pot (∼52%, P < 0.001), T100 Hz (∼39%, P < 0.001) and T10 Hz/T100 Hz (∼23%, P < 0.001) decreased only in adults. Similar decrements in vastus medialis and vastus lateralis EMG/M were observed in children and endurance athletes (range: 40–50%), and these were greater than in adults (∼15%). Whilst VA decreased more in children (-38.4 ± 22.5%, P < 0.001) than endurance athletes (-20.3 ± 10.1%, P < 0.001), it did not change in adults. Thus, children fatigued more slowly than adults and as much as endurance athletes. They developed less peripheral and more central fatigue than adults and, although central fatigue appeared somewhat higher in children than endurance athletes, both children and endurance athletes experienced greater decrements than adults. Therefore, children exhibit a more comparable neuromuscular fatigue profile to endurance athletes than adults.
DOI
10.3389/fphys.2019.00119
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Bontemps, B., Piponnier, E., Chalchat, E., Blazevich, A. J., Julian, V., Bocock, O., ... Ratel, S. (2019). Children exhibit a more comparable neuromuscular fatigue profile to endurance athletes than untrained adults. Frontiers in Physiology, 10, Article 119. Available here