The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings
Abstract
Cobalt matrix carbides are favorite cases of wear and corrosion-resistant coatings. Among thermal spray processes the high-velocity oxy-fuel (HVOF) spraying is a popular choice because of its unique properties. In this paper the effect of particles’ temperature on the porosity, corrosion as well as wear behavior of high-velocity oxy-fuel (HVOF) thermally sprayed WC-12Co coating has been studied. The temperature of particles was measured using a Spray-Watch diagnostic system. Also the scanning electron microscopy (SEM), image analysis, and X-ray diffraction (XRD) were used for examining the powder and the coating. The corrosion potential and corrosion current density was evaluated using potentio-dynamic polarization test. Results show that the porosity is affected by thermal flow on the coating surface. Besides, a higher particle temperature resulted in achieving more amorphous phases and eventually the higher corrosion resistance. Sample A was coated with an impact temperature of 2012.4 °C. Although the porosity was higher than other sprayed samples (1.7%), the higher content of amorphous phase led to recording a higher corrosion resistance (64.3E-6A). Sample B was coated with an impact temperature of 1880 °C for which the Jcorr was 67.2E-6 A. Sample C was sprayed with a low impact temperature of 1702 °C for which a surface porosity of 1% and the low corrosion resistance of 79.5E-6A were recorded. Based on the experiments it was concluded that for the WC-12Co coating the corrosion resistant phases have the dominant influences on the corrosion resistance.
Document Type
Journal Article
Date of Publication
2019
Publication Title
Ceramics International
Publisher
Elsevier Ltd
School
School of Engineering
RAS ID
29594
Copyright
subscription content
Comments
Azizpour, M. J., & Tolouei-Rad, M. (2019). The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings. Ceramics International, 45(11), 13934-13941. Available here