Document Type
Journal Article
Publication Title
Journal of Materials Research and Technology
Publisher
Elsevier
School
School of Engineering
RAS ID
28703
Funders
Funding information available at: https://doi.org/10.1016/j.jmrt.2018.12.018
Abstract
In order to eliminate the microstructure segregation of Cu–Fe immiscible alloys which characterized with a liquid miscible gap, the Cu88Fe12 (wt.%) immiscible coating was prepared by laser cladding. The phase separation characteristic and wear resistance of the Cu88Fe12 (wt.%) immiscible coating were also investigated. The results show that the size of the milled Cu88Fe12 composite powder is reduced comparing to that of the un-milled powder due to fracturing during mechanical milling. Moreover, the demixing or delamination disappears in the Cu88Fe12 immiscible coating and a large amount of face-centered-cubic (fcc) γ-Fe and body-centered-cubic (bcc) α-Fe particles are dispersed in the face-centered-cubic (fcc) ɛ-Cu matrix as a result of liquid phase separation. The size of Fe-rich particles presents an increasing tendency from the bottom to the top of the immiscible coating. As a result, the microhardness of the immiscible coating is improved compared with brass (∼138 HV0.2) due to the presence of high-hardness Fe-rich particles (∼191 HV0.2) and the solid solution strengthening effect of Fe in Cu-rich matrix. Furthermore, the width of ploughing, the width and height of wear scar on the surface of the immiscible coating are much less than those on the surface of brass. Therefore, the wear resistance of the immiscible coating is remarkably enhanced compared with brass.
DOI
10.1016/j.jmrt.2018.12.018
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
Zhao, S., Zhou, S., Xie, M., Dai, X., Chen, D., & Zhang, L. (2019). Phase separation and enhanced wear resistance of Cu88Fe12 immiscible coating prepared by laser cladding. Journal of Materials Research and Technology, 8(2), 2001-2010. Available here