Document Type
Journal Article
Publication Title
Materials & Design
Publisher
Elsevier
School
School of Engineering
RAS ID
29164
Funders
The authors would like to acknowledge the financial supports provided by National Science Foundation under Grant No. 51674167 and Fundamental Research Funds for the Central Universities under Grant No. YG2017ZD06. S.F. Jawed and C.D. Rabadia are grateful for the financial support from the ECU-HEC Joint Scholarship and ECU Postgraduate Research Scholarship, respectively.
Abstract
A series of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8 wt%) alloys were designed based on DV-Xα cluster method and e=a-Δr diagram with an anticipation to obtain high plasticity and significant strain hardening. The designed alloys were produced through cold crucible levitation melting technique in order to effectively investigate their micro-structures and mechanical properties. The addition of Cr significantly enhances the β stability in the microstructures of the Ti-25Nb-8Zr-xCr alloys. Both yield strength and hardness of the studied alloys increase due to the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength and strain hardening rate are influenced by theβstability as well as the distinct deformation mechanisms. None of the alloys comprising Cr fail up to 100 kN (the load capacity used) and all show impressive plasticity (~75%) and superior maximum compressive strength (~4.5 GPa) at 100 kN. Moreover, the deformation bands, which are found around the hardness indentations, are analyzed for all the investigated alloys. The fracture behaviors of the Ti-25Nb-8Zr-xCr alloys are also studied to observe the characteristics related to crack propagation, plastic deformation and the formation of shear bands.
DOI
10.1016/j.matdes.2019.108064
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Jawed, S. F., Rabadia, C. D., Liu, Y. J., Wang, L. Q., Li, Y. H., Zhang, X. H., & Zhang, L. C. (2019). Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Materials & Design, 181 (5).
Available here.