Twice-a-day training improves mitochondrial efficiency, but not mitochondrial biogenesis, compared with once-daily training
Authors
Thaysa Ghiarone
Victor A. Andrade-Souza
Sara K. Learsi
Fabiano Tomazini
Thays Ataide-Silva
Andre Sansonio
Mariana P. Fernandes
Karina L. Saraiva
Regina C. B. Q. Figueiredo
Yves Tourneur
Jujiao Kuang
Adriano E. Lima-Silva
David J. Bishop, Edith Cowan UniversityFollow
Document Type
Journal Article
Publication Title
Journal of Applied Physiology
ISSN
1522-1601
Volume
127
Issue
3
First Page
713
Last Page
725
PubMed ID
31246557
Publisher
American Physiological Society
School
School of Medical and Health Sciences
RAS ID
31362
Funders
Funding information available at: https://doi.org/10.1152/japplphysiol.00060.2019
Abstract
Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the “train-low” strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.
NEW & NOTEWORTHY We assessed, for the first time, the differences between two “train-low” strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the “train-low” strategy.
DOI
10.1152/japplphysiol.00060.2019
Access Rights
subscription content
Comments
Ghiarone, T., Andrade-Souza, V. A., Learsi, S. K., Tomazini, F., Ataide-Silva, T., Sansonio, A., ... Bishop, D. J. (2019). Twice-a-day training improves mitochondrial efficiency, but not mitochondrial biogenesis, compared with once-daily training. Journal of Applied Physiology, 127(3), 713-725. Available here