Hyperoxia enhances self-paced exercise performance to a greater extent in cool than hot conditions
Document Type
Journal Article
Publication Title
Experimental Physiology
ISSN
1469-445X
Volume
104
Issue
9
First Page
1398
Last Page
1407
PubMed ID
31290172
Publisher
The Physiological Society
School
School of Medical and Health Sciences
RAS ID
30994
Funders
University of Canberra Research Institute for Sport and Exercise
Abstract
The aim of this study was to determine whether breathing hyperoxic gas when self‐paced exercise performance is impaired under heat stress enhances power output. Nine well‐trained male cyclists performed four 40 min cycling time trials: two at 18°C (COOL) and two at 35°C (HOT). For the first 30 min, participants breathed ambient air, and for the remaining 10 min normoxic (fraction of inspired O2 0.21; NOR) or hyperoxic (fraction of inspired O2 0.45; HYPER) air. During the first 30 min of the time trials, power output was lower in the HOT (∼250 W) compared with COOL (∼273 W) conditions (P < 0.05). In the final 10 min, power output was higher in HOT‐HYPER (264 ± 25 W) than in HOT‐NOR (244 ± 31 W; P = 0.008) and in COOL‐HYPER (315 ± 28 W) than in COOL‐NOR (284 ± 25 W; P < 0.001). The increase in absolute power output in COOL‐HYPER was greater than in HOT‐HYPER (∼12 W; P = 0.057), as was normalized power output (∼30%; P < 0.001). The peripheral capillary percentage oxygen saturation increased in HOT‐HYPER and COOL‐HYPER (P < 0.05), with COOL‐HYPER being higher than HOT‐HYPER (P < 0.01). Heart rate was higher during the HOT compared with COOL trials (P < 0.01), as were mean skin temperature (P < 0.001) and peak rectal temperature (HOT, ∼39.5°C and COOL, ∼38.9°C; P < 0.01). Thermal discomfort was also higher in the HOT compared with COOL (P < 0.01), whereas ratings of perceived exertion were similar (P > 0.05). Hyperoxia enhanced performance during the final 25% of a 40 min time trial in both HOT and COOL conditions compared with normoxia. However, the attenuated increase in absolute and normalized power output noted in the HOT condition suggests that heat stress might mitigate the influence of hyperoxia.
DOI
10.1113/EP087864
Access Rights
subscription content
Comments
Périard, J. D., Houtkamp, D., Bright, F., Daanen, H. A. M., Abbiss, C. R., Thompson, K. G., & Clark, B. (2019). Hyperoxia enhances self‐paced exercise performance to a greater extent in cool than hot conditions. Experimental Physiology, 104(9), 1398-1407. Available here