Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys

Document Type

Journal Article

Publication Title

Materials Science and Engineering: A

Publisher

Elsevier

School

School of Engineering

RAS ID

29658

Funders

Funding information available at: https://doi.org/10.1016/j.msea.2019.138340

Comments

Rabadia, C. D., Liu, Y. J., Zhao, C. H., Wang, J. C., Jawed, S. F., Wang, L. Q., ... Zhang, L. C. (2019). Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys. Materials Science and Engineering: A, 766, Article 138340. Available here

Abstract

An impressive strengthening ability of Laves phases is favorable to develop titanium alloys with an improved trade-off between strength and plasticity. Therefore, the Ti-xZr-7Fe-ySn (x = 25, 30, 35 wt% and y = 1, 2 wt%) alloys were first designed in such a manner that a Laves phase would precipitate in these alloys and then the investigated alloys were produced by cold crucible levitation melting. A hexagonal close-packed C14 type Laves phase along with a dominant fraction of body-centered cubic β phase are formed in all the as-cast Ti-xZr-7Fe-ySn alloys except in Ti-25Zr-7Fe-2Sn. The volume fraction of the Laves-C14 phase is found to be sensitive to the quantities of Zr and Sn. Amongst all the investigated alloys, Ti-35Zr-7Fe-2Sn shows a better dislocation-pinning ability in terms of dislocation density (3.96 × 1015 m−2), yield strength (1359 MPa) and hardness (437 HV), whereas Ti-25Zr-7Fe-1Sn shows a better deformation ability in terms of compressive strain at failure (36.2%) and plastic strain (31.9%). Crack propagation, regions of dimples and deformation bands are examined in the fracture analyses. Moreover, in this work, Ti-25Zr-7Fe-1Sn exhibits the best strength and plasticity trade-off in terms of a product of ultimate strength and compressive strain at failure (77.4 GPa %).

DOI

10.1016/j.msea.2019.138340

Access Rights

subscription content

Share

 
COinS