Author Identifier
Abdellah Shafieian (Dastjerdi)
https://orcid.org/0000-0002-3012-8887
Mehdi Khiadani
Document Type
Journal Article
Publication Title
Energy Conversion and Management
Publisher
Elsevier
School
School of Engineering
RAS ID
29805
Abstract
This study proposes a novel integrated solar membrane-based desalination system. The system includes vacuum glass tubes to increase absorbed solar energy and to decrease heat loss, heat pipes to transfer the absorbed energy efficiently, and a tubular direct contact membrane distillation module to use the absorbed energy more effectively. To improve the freshwater production rate and overall efficiency of the proposed system, a cooling unit was also added to the permeate loop of the desalination unit. The performance of the system was experimentally investigated without (Case I) and with (Case II) the cooling unit in summer and without the cooling unit in winter (Case III) under climatic conditions of Perth, Western Australia. The experimental results indicated that except a few minutes in the morning, the heat pipe solar system was able to provide all the required thermal energy for the desalination system. The maximum thermal efficiency of the solar system in summer reached ~78% and its exergy efficiency fluctuated between 4 and 5% for a noticeable amount of time from 10:30 AM to 3 PM. Moreover, the maximum freshwater production rate were 2.78, 3.81, and 2.1 L/m2h in Cases I, II, and III, respectively. The overall efficiency of the system improved from 46.6% in Case I to 61.8% in Case II showing the technical effectiveness of implementing the cooling unit in the permeate flow loop of the system. In addition, the daily averaged specific energy consumption in Cases I, II, and III were 407, 377, and 450 kWh/m3, respectively.
DOI
10.1016/j.enconman.2019.112055
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
This is an Author's Accepted Manuscript of:
Shafieian, A., & Khiadani, M. (2019). A novel solar-driven direct contact membrane-based water desalination system. Energy Conversion and Management, 199, Article 112055.
https://doi.org/10.1016/j.enconman.2019.112055