Boosting fenton-like reactions via single atom fe catalysis
Authors
Yu Yin, Edith Cowan UniversityFollow
Lei Shi, Edith Cowan UniversityFollow
Wenlang Li
Xuning Li
Hong Wu, Edith Cowan UniversityFollow
Zhimin Ao
Wenjie Tian
Shaomin Liu
Shaobin Wang
Hongqi Sun, Edith Cowan UniversityFollow
Document Type
Journal Article
Publication Title
Environmental Science & Technology
ISSN
1520-5851
Volume
53
Issue
19
First Page
11391
Last Page
11400
PubMed ID
31436973
Publisher
ACS Publications
School
School of Engineering
RAS ID
30522
Funders
This work was financially supported by the National Natural Science Foundation of China (No. 51602133,21607029 and 21777033), Natural Science Foundation of Jiangsu Province (No. BK20160555), Science and Technology Program of Guangdong Province (No. 2017B020216003).
Abstract
The maximization of the numbers of exposed active sites in supported metal catalysts is important to achieve high reaction activity. In this work, a simple strategy for anchoring single atom Fe on SBA-15 to expose utmost Fe active sites was proposed. Iron salts were introduced into the as-made SBA-15 containing the template and calcined for simultaneous decomposition of the iron precursor and the template, resulting in single atom Fe sites in the nanopores of SBA-15 catalysts (SAFe-SBA). X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and extended X-ray absorption fine structure (EXAFS) imply the presence of single atom Fe sites. Furthermore, EXAFS analysis suggests the structure of one Fe center with four O atoms, and density functional theory calculations (DFT) simulate this structure. The catalytic performances of SAFe-SBA were evaluated in Fenton-like catalytic oxidation of p-hydroxybenzoic acid (HBA) and phenol. It was found that the single atom SAFe-SBA catalysts displayed superior catalytic activity to aggregated iron sites (AGFe-SBA) in both HBA and phenol degradation, demonstrating the advantage of SAFe-SBA in catalysis.
DOI
10.1021/acs.est.9b03342
Access Rights
subscription content
Comments
Yin, Y., Shi, L., Li, W., Li, X., Wu, H., Ao, Z., ... & Sun, H. (2019). Boosting fenton-like reactions via single atom fe catalysis. Environmental Science & Technology, 53(19), 11391-11400.
Available here.