Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles
Document Type
Journal Article
Publication Title
Journal of Applied Physiology
Publisher
American Physiological Society
School
Centre for Exercise and Sports Science Research / School of Medical and Health Sciences
RAS ID
30981
Abstract
Fatiguing exercise causes a reduction in motor drive to the muscle. Group III/IV muscle afferent firing is thought to contribute to this process; however, the effect on corticospinal and intracortical networks is poorly understood. In two experiments, participants performed sustained maximal isometric finger abductions of the first dorsal interosseous (FDI) muscle, with postexercise blood flow occlusion (OCC) to maintain the firing of group III/IV afferents or without occlusion (control; CON). Before and after exercise, single- and paired-pulse transcranial magnetic stimulation (TMS) tested motor evoked potentials (MEPs), intracortical facilitation [ICF (12 ms)], and short-interval intracortical inhibition [SICI2 (2 ms), SICI3 (3 ms)]. Ulnar nerve stimulation elicited maximal M waves (MMAX). For experiment 1 (n = 16 participants), TMS intensities were 70% and 120% of resting motor threshold (RMT) for the conditioning and MEP stimuli, respectively. For experiment 2 (n = 16 participants), the MEP was maintained at 1 mV before and after exercise and the conditioning stimulus individualized. In experiment 1, MEP/MMAX was reduced after exercise (~48%, P = 0.007) but was not different between conditions. No changes occurred in ICF or SICI. In experiment 2, MEP/MMAX increased (~27%, P = 0.027) and less inhibition (SICI2: ~21%, P = 0.021) occurred after exercise for both conditions, whereas ICF decreased for CON only (~28%, P = 0.006). MEPs and SICI2 were modulated by fatiguing contractions but not by group III/IV afferent firing, whereas sustained afferent firing appeared to counteract postexercise reductions in ICF in FDI. The findings do not support the idea that actions of group III/IV afferents on motor cortical networks contribute to the reduction in voluntary activation observed in other studies.
DOI
10.1152/japplphysiol.00595.2019
Access Rights
subscription content
Comments
Latella, C., van der Groen, O., Ruas, C. V., & Taylor, J. L. (2020). The effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles. Journal of Applied Physiology, 128, 149-158. https://doi.org/10.1152/japplphysiol.00595.2019