Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures
Document Type
Journal Article
Publication Title
Structural Concrete
Publisher
Wiley
School
School of Engineering
RAS ID
28723
Abstract
Self‐compacting concrete (SCC) has developed rapidly in modern concrete structures to accommodate the need of high deformability and considerable resistance to segregation. The lightweight aggregate called scoria is also utilized to manufacture lightweight self‐compacting concrete (LWSCC) to improve the strength‐to‐weight ratio with considerable cost beneficial. Meanwhile, the LWSCC employs fibers (polypropylene [PP] and steel) equipping different replacement ratios of traditional aggregates, the SCC will be invented to reveal balanced fresh property, spalling behavior, mechanical performance especially at elevated temperatures. In this study, eight LWSCC mix designs were explored with varying fiber ratios by volume of PP fiber (0.1, 0.15, 0.20, and 0.25%) and steel fiber (0.25, 0.5, 0.75, and 1.0%). The effects of different fiber types and ratios are tested with fresh properties (slump flow and J‐ring), hardened mechanical performance (compressive and tensile strength at 20°C) and high temperature resistance (compressive and tensile strength, mass loss and spalling) after 28‐day curing at 100, 300, 600, and 900°C. The 0.25% optimum fiber ratio for PP fiber mix and 0.75% for steel fiber mix are determined with balanced fresh properties as well as high‐temperature resistance for the hardened properties.
DOI
10.1002/suco.201800231
Access Rights
subscription content
Comments
Aslani, F., Sun, J., Bromley, D., & Ma, G. (2019). Fiber‐reinforced lightweight self‐compacting concrete incorporating scoria aggregates at elevated temperatures. Structural Concrete, 20(3), 1022-1035. https://doi.org/10.1002/suco.201800231