Document Type
Journal Article
Publication Title
Future Internet
Publisher
MDPI AG
School
Cyber Security Cooperative Research Centre
RAS ID
34118
Abstract
This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes. © 2020 by the authors.
DOI
10.3390/fi12030044
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Ferrag, M. A., Maglaras, L., Ahmim, A., Derdour, M., & Janicke, H. (2020). RDTIDS: Rules and decision tree-based intrusion detection system for Internet-of-Things networks. Future Internet, 12(3), 44. https://qdoi.org/10.3390/fi12030044