Authors
Fei Wang
Minyi Zhang
Wei Chen
Shaghraf Javaid
Heng Yang
Sheng Wang
Xuyong Yang
Lai-Chang Zhang, Edith Cowan UniversityFollow
Mark A. Buntine
Chunsen Li
Guohua Jia
Document Type
Journal Article
Publication Title
Nanoscale Advances
Volume
2
Issue
8
First Page
3316
Last Page
3322
Publisher
Royal Society of Chemistry
School
School of Engineering
RAS ID
32031
Abstract
© The Royal Society of Chemistry. Atomically thin colloidal quasi-two-dimensional (2D) semiconductor nanoplatelets (NPLs) have attracted tremendous attention due to their excellent properties and stimulating applications. Although some advances have been achieved in Cd- and Pb-based semiconductor NPLs, research into heavy-metal-free NPLs has been reported less due to the difficulties in the synthesis and the knowledge gap in the understanding of the growth mechanism. Herein wurtzite ZnTe NPLs with an atomic thickness of about 1.5 nm have been successfully synthesized by using Superhydride (LiEt3BH) reduced tributylphosphine-Te (TBP-Te) as the tellurium precursor. Mechanistic studies, both experimentally and theoretically, elucidate the transformation from metastable ZnTe MSC-323 magic-size nanoclusters (MSCs) to metastable ZnTe MSC-398, which then forms wurtzite ZnTe NPLs via an oriented attachment mechanism along the [100] and [002] directions of the wurtzite structure. This work not only provides insightful views into the growth mechanism of 2D NPLs but also opens an avenue for their applications in optoelectronics.
DOI
10.1039/d0na00409j
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License
Comments
Jia, G., Wang, F., Buntine, M., Zhang, M., Chen, W., Javaid, S., ... & Jia, G. (2020). Atomically thin cadmium-free ZnTe nanoplatelets formed from magic-size nanoclusters. Nanoscale Advances, 2, 3316 - 3322. https://doi.org/10.1039/d0na00409j