Author Identifier
Anna Lafratta
https://orcid.org/0000-0001-8414-2417
Oscar Serrano
https://orcid.org/0000-0002-5973-0046
Pere Masque
https://orcid.org/0000-0002-1789-320X
Paul Lavery
Document Type
Journal Article
Publication Title
Ocean and Coastal Management
ISSN
09645691
Volume
197
Publisher
Elsevier
School
School of Science / Centre for Marine Ecosystems Research
RAS ID
35251
Funders
Edith Cowan University - Open Access Support Scheme 2020
Edith Cowan University Environmental Protection
Authority of South Australia SA Water Australian
Research Council Generalitat de Catalunya
Grant Number
ARC Number : DE170101524, LE170100219
Grant Link
http://purl.org/au-research/grants/arc/DE170101524 http://purl.org/au-research/grants/arc/LE170100219
Abstract
© 2020 Elsevier Ltd Seagrass restoration has been suggested as a Blue Carbon (BC) strategy for climate change mitigation. For Nationally Determined Contributions (NDC) and carbon crediting schemes, BC projects need to demonstrate ‘additionality’, that is enhanced CO2 sequestration and/or avoided greenhouse gas emissions following management actions. This typically requires determining soil carbon accumulation rates (CAR), which is often done using radionuclides or surface elevation tables to estimate sedimentation rates. Here we undertook a case study, using 210Pb and 14C dating, to detect possible changes in Corg stocks and CAR following the loss and partial recovery of Posidonia seagrass meadows in South Australia since 1980–90s. The 210Pb data revealed a lack of accumulation of excess 210Pb in most sites, suggesting negligible accumulation of sediments, intense mixing of the upper layers, or accumulation of reworked sediments, precluding the estimation of reliable CAR at decadal time scales. This limitation was also encountered with 14C. The inability to compare sites over analogous periods of time prevented quantifying differences in soil Corg sequestration, thereby to demonstrate additionality. The lack of significant differences in soil Corg stocks among sites which never suffered seagrass loss, those showing recovery and those with no recovery (5.7 ± 1.2, 4.5 ± 0.7 and 3.3 ± 0.3 kg Corg m-2 within the top meter, respectively) also precluded estimates of soil Corg gains or losses. Our findings demonstrate that, while 210Pb and 14C provide important information on sediment deposition dynamics, it is not straightforward to demonstrate additionality using radionuclides in low depositional seagrass habitats exposed to hydrodynamic energy, features which may be encountered in seagrass sites. We provide insights for the selection of suitable habitats for seagrass BC projects, suggest possible alternative methods for estimating additionality, and discuss the implications of the findings for the implementation of seagrass BC strategies to mitigate greenhouse gas emissions.
DOI
10.1016/j.ocecoaman.2020.105295
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
Lafratta, A., Serrano, O., Masqué, P., Mateo, M. A., Fernandes, M., Gaylard, S., & Lavery, P. S. (2020). Challenges to select suitable habitats and demonstrate ‘additionality’ in blue carbon projects: A seagrass case study. Ocean & Coastal Management, 197, article 105295.
https://doi.org/10.101/j.ocecoaman.2020.105295