Document Type
Journal Article
Publication Title
Scientific Reports
Volume
10
Issue
1
Publisher
Springer Nature
School
Centre for Exercise and Sports Science Research / School of Medical and Health Sciences
RAS ID
35359
Funders
Japan Society for the Promotion of Science
Abstract
© 2020, The Author(s). This study investigated the relationship between push-in meter (PM) and ultrasound strain elastography (USE) for biceps brachii (BB) muscle hardness. BB hardness of 21 young men was assessed by PM and USE during rest and isometric contractions of six different intensities (15, 30, 45, 60, 75, 90% of maximal voluntary contraction: MVC) at 30°, 60° and 90° elbow flexion. Muscle hardness (E) was calculated from the force–displacement relationship in PM, and strain ratio (SR) between an acoustic coupler (elastic modulus: 22.6 kPa) and different regions of interest (ROIs) in BB was calculated and converted to Young’s modulus (YM) in USE. In resting muscle, E was 26.1 ± 6.4 kPa, and SR and YM for the whole BB was 0.88 ± 0.4 and 30.8 ± 12.8 kPa, respectively. A significant (p < 0.01) correlation was evident between E and logarithmical transformed SR (LTSR) for the ROI of whole BB (r = − 0.626), and E and converted YM (r = 0.615). E increased approximately ninefold from resting to 90% MVC, and E and LTSR (r = − 0.732 to − 0.880), and E and converted YM for the SR above 0.1 were correlated (r = 0.599–0.768, p < 0.01). These results suggest that muscle hardness values obtained by PM and USE are comparable.
DOI
10.1038/s41598-020-77330-5
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
Murayama, M., Nosaka, K., Inami, T., Shima, N., & Yoneda, T. (2020). Biceps brachii muscle hardness assessed by a push-in meter in comparison to ultrasound strain elastography. Scientific Reports, 10, article 20308. https://doi.org/10.1038/s41598-020-77330-5