Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy
Authors
X. Luo
L. H. Liu
C. Yang
H. Z. Lu
H. W. Ma
Z. Wang
D. D. Li
Lai Chang Zhang, Edith Cowan UniversityFollow
Y. Y. Li
Document Type
Journal Article
Publication Title
Journal of Materials Science and Technology
Volume
68
First Page
112
Last Page
123
Publisher
Elsevier
School
School of Engineering
RAS ID
32750
Funders
National Natural Science Foundation of China Key-Area Research and Development Program of Guangdong Province Key Basic and Applied Research Program of Guangdong Province Optical Valley Science Research Project, WEHDZ China Postdoctoral Science Foundation
Abstract
© 2020 It is well accepted that grain-boundary phases in metallic alloys greatly deteriorate the mechanical properties. In our work, we report on a novel strategy to prepare high strength-ductility β-type (Ti69.71Nb23.72Zr4.83Ta1.74)97Si3 (at.%) (TNZTS) alloys by tailoring grain-boundary metastable Si-containing phase. Specifically, the thin shell-shaped metastable S1 phase surrounding the columnar β-Ti grain was intercepted successfully via nonequilibrium rapid solidification achieved by selective laser melting (SLM). Subsequently, the thin shell-shaped metastable (Ti, Nb, Zr)5Si3 (called S1) phase was transformed into globular (Ti, Nb, Zr)2Si (called S2) phase by the solution heat treatment. Interestingly, the globular S2 phases reinforced TNZTS alloy exhibits ultrahigh yield strength of 978 MPa, ultimate strength of 1010 MPa and large elongation of 10.4 %, overcoming the strength–ductility trade-off of TNZTS alloys by various methods. Especially, the reported yield strength herein is ∼55 % higher than that of conventionally forged TNZT alloys. Dynamic analysis indicates the globularization process of the metastable S1 phase is controlled by the model of termination migration. The quantitative analysis on strengthening mechanism demonstrates that the increase in yield strength of the heat-treated alloys is mainly ascribed to the strengthening of the precipitated silicide and the dislocations induced by high cooling rate. The obtained results provide some basis guidelines for designing and fabricating β-titanium alloys with excellent mechanical properties, and pave the way for biomedical application of TNZTS alloy by SLM.
DOI
10.1016/j.jmst.2020.06.053
Access Rights
subscription content
Comments
Luo, X., Liu, L. H., Yang, C., Lu, H. Z., Ma, H. W., Wang, Z., ... Li, Y. Y. (2021). Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. Journal of Materials Science & Technology, 68, 112-123. https://doi.org/10.1016/j.jmst.2020.06.053